Sari direct la conținut

Gravitatia cuantica, testabila in laborator?

Contributors.ro
Cristian Presura, Foto: Arhiva personala
Cristian Presura, Foto: Arhiva personala

Iubesc fizica atunci când mă duce în lumi exotice. Alergând între serviciu şi casă, oscilând între un ecran de sticlă şi altul de plastic, am prea uşor senzaţia că poveştile lor formează întreaga lume. Gălăgia ascunde gânditorii care construiesc lumea de mâine, tot aşa cum zgomotul bătăliilor mari ale istoriei a ascuns gânditorii ce au construit lumea noastră. Iar azi, cei mai avansaţi sunt cei care studiază gravitaţia cuantică.

De ce zic asta? Pentru că legile pe care le vom afla despre gravitaţia cuantică sunt cele care vor defini ţesătura spaţiului microscopic, cele care vor rescrie cauzalitatea şi cele care vor redefini identitatea. Gândiţi-vă, cum am putea fi noi „ceva” dacă nu ne-am fi păstrat identitatea de la o zi la alta? Iar de asta este responsabilă, în primă instanţă, mecanica newtoniană. Aici obiectele sunt bine definite, localizate, iar atracţia gravitaţională dintre ele poate fi urmărită clar.

Realitatea este, însă, un actor ce îşi schimbă măştile. La un nivel mult mai mare, cel al stelelor masive şi al galaxiilor, atracţia gravitaţională se dovedeşte a fi o consecinţă a curburii spaţiu-timpului. Gravitaţia lui Newton este înlocuită cu teoria relativităţii a lui Einstein. Viteza luminii devine o limită a propagării oricărui efect, iar spaţiul se transformă într-o saltea elastică. Spaţiul se întinde odată cu expansiunea universului şi vibrează atunci când poartă unde gravitaţionale.

La un nivel mult mai mic, cel al particulelor elementare, teoria lui Newton este înlocuită de mecanica cuantică. Electronul se află, simultan, în toate colţurile atomului iar întâmplarea intervine în mişcările sale. Alte particule vin la viaţă din vidul cuantic, iar unele dintre ele rămân corelate şi se influenţează chiar şi atunci când ajung la capete diferite ale universului.

Înainte ca filozofii să dea sens acestor noi măşti ale realităţii (cosmice sau microscopice), fizicienii le-au rezolvat ecuaţiile. În marile acceleratoare de particule, când calculează traiectoria particulelor elementare, ei folosesc legile cuanticii. Pe cer, urmăresc mişcarea razelor de lumină pe spaţiul curb folosind legile teoriei relativităţii generale. Ori una, ori alta, pentru că nu au încă o teorie care să le unifice. O astfel de teorie ar purta numele de „gravitaţie cuantică”, pentru că unifică gravitaţia (echivalentă cu teoria relativităţii generale) cu mecanica cuantică. La o sută de ani după apariţia celor două teorii, nu numai că fizicienii nu ştiu cum arată combinaţia lor, dar nici măcar nu cad de acord cum ar putea să arate!

O parte dintre fizicieni continuă să propună soluţii teoretice pentru gravitaţia cuantică, care să aibă sens şi să fie acceptate, tot aşa cum teoria bosonului Higgs era cunoscută şi acceptată cu 50 de ani înainte de a fi descoperită particula Higgs. Alţii însă, mai pragmatici, caută să răspundă la întrebare experimental. Au însă o problemă fundamentală: forţa gravitaţională este cu 40 de ordine de mărime mai slabă decât celelalte forţe ale naturii! De aceea atracţia gravitaţională dintre două particule nu poate fi încă măsurată în acceleratoarele de particule, acolo unde sunt investigate proprietăţile cuantice.

Esenţa problemei este următoarea: mecanica cuantică ne spune că, în principiu, putem pune Pământul într-o stare cuantică, în care se află simultan aici şi câţiva metri mai la dreapta (starea se numeşte de „superpoziţie cuantică”). Teoria relativităţii ne spune că Pământul curbează spaţiul. După ce unificăm teoriile, ce se întâmplă cu spaţiul? Va fi şi el, simultan, în două forme curbe ale sale? Ce se întâmplă cu un măr aflat pe suprafaţa Pământului? Va fi atras el din două direcţii? Se va afla, simultan, în două universuri generate de cele două spaţii curbe?

Poate că civilizaţiile extraterestre pot pune planete în superpoziţie cuantică. La noi, cel mai mare obiect pus în superpoziţie cuantică este o lamelă de câteva zeci de micrometri (dimensiunea unui fir de păr, abia cât să se vadă cu ochiul liber). În anul 2010, Andrew Cleland (atunci la Universitatea Santa Barbara din California) a reuşit să pună o astfel de lamelă într-o stare de superpoziţie cuantică. Astfel, un capăt al ei se afla în două locuri simultan, separate de o distanţă mai mică decât dimensiunea unui atom (mai puţin decât un nanometru). Lamela este echivalentul „planetei” noastre din experiment. Pasul doi ar fi să vedem cum atrage ea gravitaţional un alt obiect („mărul”), din cele două locaţii, unde se află în acelaşi timp. Îl va atrage din stânga, din dreapta, simultan din ambele direcţii? Atunci am putea vedea cum se comportă cuantic câmpul gravitaţional generat de lamelă cuantică.

Clasic (nu cuantic), cât de bine putem măsura forţele de atracţie gravitaţională? În anul 2003, fizicienii C.Long şi John Price au reuşit să investigheze forţa clasică de atracţie a unor lamele similare, mai bine zis variaţia forței cu distanţa. Au putut vedea că forţa gravitațională cu care lamela atrage obiecte variază aşa cum prezice Newton, pe distanţe de câţiva micrometri distanţă (de un milion de ori mai mari decât dimensiunea atomului). Dar, pentru a vedea dacă şi lamela cuantică se supune aceleiaşi legi newtoniene (sau deviază) ar trebui să investigheze forţa pe o distanţă comparabilă cu diametrul unui atom. Atenţie, distanţa este cu 6 ordine de mărime mai mică (forta va fi cu 12 ordine de mărime mai mică). Vedem că mai au mult de lucru, pentru a-şi îmbunătăţi măsurătorile.

În alte locuri din lume, cercetătorii se străduiesc să măsoare direct forţa de atracţie gravitaţională, nu numai variaţia ei cu distanţa. Cele mai mici obiecte pentru care a fost măsurată forţa sunt de ordinul a câteva zeci de grame, mult peste greutatea de nanograme a lamelei. Fizicienii progresează însă şi în acest domeniu, datorită ingineriei nanomaterialelor. Ea face posibilă construcţia de aparate în miniatură, atom cu atom. Recent, Markus Aspelmeyer (Austria) a propus o astfel de tehnică pentru a măsura forţa de atracţie gravitaţională a unor obiecte mici, având doar câteva miligrame (vezi figura). Chiar şi aşa însă, încă sunt la şase ordine de mărime distanţă de greutatea de nanograme a lamelelor cuantice.

Citeste intreg articolul si coemnteaza pe contributors.ro

ARHIVĂ COMENTARII
INTERVIURILE HotNews.ro